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Abstract

Asymmetry and fat-tail are both stylized facts of financial return data. Many asymmetric

and fat-tailed distributions have been used to model the innovation in autoregressive conditional

heteroskedasticity (ARCH) models. This article introduces two more distributions from systems

of frequency curves into the ARCH context: Pearson’s Type IV and Johnson’s SU. Both dis-

tributions have two shape parameters and allow a wide range of skewness and kurtosis. We

then impose dynamics on both shape parameters to obtain autoregressive conditional density

(ARCD) models, allowing time-varying skewness and kurtosis. The quasi-maximum likelihood

estimates (QMLE) of volatility parameters obtained from these distributions are found to have

high efficiency in a simulation study when the true distribution is asymmetric and fat-tailed.

ARCD models with these distributions are applied to the daily Standard & Poor 500 index re-

turn data. Models with time-varying shape parameters are found to give better fit than models

with constant shape parameters.

Key Words: ARCH; Asymmetry; Fat-tail; Johnson’s transformation; Pearson system; System

of Distributions

1. INTRODUCTION

Important stylized facts about financial return data have been discovered through varieties of

financial applications. Three of the stylized facts relevant to this article are volatility clustering,
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asymmetry, and fat-tail. Volatility clustering can be explicitly modeled by a class of autoregressive

conditional heteroskedasticity (ARCH) models (Engle 1982; Bollerslev 1986). There is a voluminous

literature on conditional heteroskedasticity (CH) models following Engle’s seminal work; see for

example Bollerslev, Engle, and Nelson (1994) for a survey. Consider a time series εt, t = 1, . . . , T .

A simple normal-GARCH(1,1) model (Bollerslev 1986) has the form

εt|ψt−1 =
√
htzt, (1)

zt ∼ N(0, 1), (2)

ht = b0 + b1ε
2
t−1 + b2ht−1, (3)

where ψt−1 is the information set up to time t − 1. This model is the most widely used CH

model, and the consistency of the resulting quasi-maximum-likelihood estimator (QMLE) under

misspecification (Bollerslev and Wooldridge 1992) makes it even popular. However, this model

does not allow asymmetry and is not sufficiently fat-tailed to capture the excess kurtosis found in

most financial return data. This has led to a search for more flexible conditional distribution to

replace the conditional normal assumption in (2).

A desirable conditional distribution in the ARCH context should offer a wide range of shapes

to approximate the truth and at the same time remain easy to handle computationally. Many

distributions have been tried in the literature to to account for asymmetry or fat-tail or both. An

incomplete alphabetical list of these distribution is: generalized error distribution (GED) (Nelson

1991), generalized hyperbolic distribution (GHD) (Eberlein and Keller 1995; Barndorff-Nielsen

1997), Gram-Charlier (GC) distribution (Jondeau and Rockinger 2001), noncentral t distribution

(Harvey and Siddique 1999), stable distribution (McCulloch 1996), and t distribution (Bollerslev

1987; Hansen 1994). All these distributions can give thicker tails than the normal distribution. For

symmetric distributions in the list, skewed versions can be constructed by perturbing the symmetric

versions (Fernández and Steel 1998; Azzalini and Capitanio 2003; Jones and Faddy 2003). These

distributions may be adequate for some cases but in general, there are various issues in applying

them. The tail of a GED is not sufficiently thick to account for extremal events. The computation

of a GHD can be challenging as its density involves a Bessel function of the third kind and there are

three, instead of two, shape parameters. A GC distribution can only offer a small range of skewness
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and kurtosis and the nonlinear constraint on the shape parameters is hard to impose in estimation;

see Figure 1 and discussions in Section 2.1. The density of a noncentral t distribution involves

the sum of an infinite series and can be hard to handle. A stable distribution has the justification

from the generalized central limiting theorem, but the its variance does not exist when the tail is

thicker than normal. A skewed t distribution seems to be the best choice in both flexibility and

computational ease. It has been successfully applied in modeling financial returns data (Hansen

1994; Jondeau and Rockinger 2003). The success of skewed t distributions motives one to reawaken

the literature of systems of frequency curves to give flexible shapes for asymmetry and fat-tail. In

fact, it will be seen that one of the distributions to be introduced, Pearson’s Type IV, can also be

viewed as a skewed t distribution.

A system of frequency curves contains distributions that have widely varying shapes (see for

example Stuart and Ord 1994,Chapter 6). Most of the work was done between 1890 and early 1900s

and during 1940s. Among the various systems in the literature, Pearson’s system and Johnson’s

systems offers the maximum range of skewness and kurtosis. That is, for any given legitimate

pair of skewness and kurtosis, one can find a distribution in these systems that gives the specified

skewness and kurtosis. Pearson’s system seeks to ascertain a family of distributions with a small

number of parameters to represent observed data satisfactorily. Johnson’s system seeks a transfor-

mation such that the transformed variate is at least approximately normal. Within these systems,

Pearson’s Type IV distribution and Johnson’s SU distribution are ideal candidate to approximate

the unknown true distributions of the ARCH innovations; see details in Section 2. Pearson’s Type

IV was first introduced into the ARCH context by Premaratne and Bera (2001) for modeling asym-

metry and fat-tail. The contribution of this article differs from Premaratne and Bera (2001) in two

aspects: 1) Instead of using numerical integration as in Premaratne and Bera (2001), we use an

accurate implementation to compute the closed-form expression of the normalizing constant, which

has probably been the main obstacle for the wide spread of Pearson’s Type IV; and 2) We use a

standardized version of Pearson’s Type IV with mean zero and variance one to replace the normal

assumption in (2). Extra emphasis will be put on the computation of normalizing constant when

Pearson’s Type IV distribution is introduced in Section 2.1. Johnson’s SU distribution can offer

a slightly larger range of skewness-kurtosis combinations, and as a result, its tail is not as thick
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as Pearson’s Type IV; see more detail in Section 2 and Figure 1. It has not been applied in the

ARCH context yet. But, as will be demonstrated, it can be used as a simpler alternative to Pear-

son’s Type IV distribution when asymmetry and fat-tail are present. A Johnson’s SU variate has

the interpretation of “transform from normal”. Therefore, it has the advantage that the density,

distribution, quantile, and random number generator are easily obtained from transformation of a

standard normal.

Both Pearson’s Type IV and Johnson’s SU have two shape parameters and offer a wide range

of skewness and kurtosis that may be encountered in financial returns data. These parameters

can be made time-varying in the same fashion in the line of Hansen (1994) to form autoregressive

conditional density (ARCD) models. An ARCD model can be very useful when skewness and

kurtosis are desired to be time-varying, for example, in asset pricing (Harvey and Siddique 2000).

It has a clear computational advantage over autoregressive conditional moments (ARCM) model,

where dynamics are imposed directly on skewness or kurtosis and the shape parameters are backed

out from the skewness or kurtosis (Harvey and Siddique 1999; Brooks, Burke, and Persand 2002).

Furthermore, unlike higher moments such as skewness and kurtosis, the variation in the shape

parameters may be smaller and easier to manage numerically. Therefore, we adopt the ARCD

approach in this article.

As volatility is more important than higher moments in the ARCH context, it is of practical

interest to investigate the performance of the QMLE of volatility parameter using various as-

sumed distributions under various true distributions. With a different parameterization of ht than

(3), Newey and Steigerwald (1997) gives general conditions under which the QMLE is consistent.

However, there has not been much research on this aspect using the most widely used ARCH spec-

ification in (3) when asymmetry and fat-tail are allowed through distributions with flexible shapes.

We demonstrate through a simulation study that both Pearson’s Type IV and Johnson’s SU can

give more efficient QMLE of volatility parameters than obtained under the normal assumption.

Johnson’s SU can give QMLE of volatility parameters with little efficiency loss when the tail of

the true distribution is thicker. On the other hand, Pearson’s Type IV gives QMLE of volatility

parameter with some efficiency loss when the true distribution does not have as thick tails. This

efficiency comparison result, in combination with concerns of computational ease, makes Johnson’s
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SU distribution a very useful tool in financial return data analysis.

The rest of this article is organized as follows. In Section 2, Pearson’s Type IV distribution and

Johnson’s SU distribution are briefly reviewed and their properties discussed in the relevance of

modeling financial returns. These families are then used as the innovation distribution in a GARCH

type specification with time-varying shape parameters in Section 3. A simulation study is conducted

in Section 4 to examine the performance of the QMLE under correct- and misspecification of the

innovation distribution. The return of the Standard & Poor (S&P) 500 daily index is used to

illustrate the method in Section 5. Discussions conclude in Section 6.

2. DISTRIBUTIONS FROM SYSTEMS OF FREQUENCY CURVES

2.1 Pearson’s Type IV Distribution

Back in the 1890s, Pearson (1895) introduced the now called Pearson’s system of frequency curves to

give a wide range of distributions to fit data that can not be well fitted by the normal distribution.

The density functions in the system are defined through a differential equation which leads to

various families under different conditions (see for example Johnson, Kotz, and Balakrishnan 1994,

Chapter 12). One of the members in the system, Pearson’s Type IV distribution, has density of

the form

f(x; ν,m, ξ, λ) = k

[
1 +

(
x− ξ

λ

)2
]−m

exp
[
−ν tan−1

(
x− ξ

λ

)]
, (4)

where m > 1/2, ν, ξ, and λ > 0 are parameters, x ∈ R, and k is the normalizing constant depending

on ν, m, and λ. Clearly, ξ and λ are location and scale parameters, respectively. Parameter ν can

be interpreted as a skewness parameter. When ν = 0, the distribution becomes symmetric. The

distribution is negatively (or positively) skewed when ν > 0 (or ν < 0). Parameter m controls the

tail thickness and can be interpreted as a kurtosis parameter. Increasing m decreases the kurtosis.

The distribution reduces to a t distribution with degrees of freedom n when ν = 0, m = (n+ 1)/2

and δ =
√
n. The normal density is then obtained as m → ∞. With nonzero ν, Pearson’s Type

IV distribution can be viewed as a skewed t distribution. It should be noted that ν and m are not,

respectively, purely the skewness parameter and kurtosis parameter; see the moments expressions

below.

The moments of Pearson’s Type IV distribution can be found in classic references (e.g. Stuart
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and Ord 1994). The mean µ, variance σ2, skewness s, and kurtosis κ are

µ = ξ − λν

r
(m > 1), (5)

σ2 =
λ2

r2(r − 1)
(r2 + ν2) (m > 3/2), (6)

s =
−4ν
r − 2

√
r − 1
r2 + ν2

(m > 2), (7)

κ =
3(r − 1)[(r + 6)(r2 + ν2)− 8r2]

(r − 2)(r − 3)(r2 + ν2)
(m > 5/2), (8)

where r = 2(m− 1). The jth moment exists only when r+ 1 > j, a resemblance to t distributions.

The skewness and kurtosis are jointly determined by the two shape parameters ν and m. Let

β1 = s2 and β2 = κ. The range of β1 and β2 is often used in comparing the capability of modeling

asymmetry and fat-tail across different distributions. Figure 1 shows the feasible range of (β1, β2)

on the β1-β2 plane for four distributions, all having mean zero and variance one. Pearson’s Type

IV offers a wide range below the dotted line. In contrast,, the range of the Gram-Charlier density

(Jondeau and Rockinger 2001) shown below the dot-dashed line, is rather limited.

[Figure 1 about here.]

The main obstacle of applying Pearson’s Type IV distribution has been the evaluation of the

normalizing constant k. Premaratne and Bera (2001) used numerical integration to obtain it in

each evaluation of the likelihood function. Actually, the normalizing constant has a closed-form

expression which involves the gamma function with a complex-valued argument (Pearson 1895;

Nagahara 1999)

k(ν,m, λ) =
Γ(m)√

πΓ(m− 1/2)

∣∣∣∣Γ(m+ iν/2)
Γ(m)

∣∣∣∣2 (9)

where i =
√
−1 and | · | is the module of a complex number. A single precision complex gamma

function is available from www.netlib.org. The computation in this article, however, uses the

C code of Heinrich (2004) to compute the squared module in (9) directly with highest machine

allowable precision. In particular,∣∣∣∣Γ(x+ iy/2)
Γ(x)

∣∣∣∣2 =
1

F (−iy, iy;x; 1)
, (10)
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where F is the hypergeometric function, sometimes written as 2F1. Heinrich (2004) utlized two

equations to compute F (−iy, iy;x; 1). The first equation is a series expansion

F (−iy, iy;x; 1) = 1 +
y2

x1!
+
y2(y2 + 12)
x(x+ 1)2!

+
y2(y2 + 12)(y2 + 22)
x(x+ 1)(x+ 2)3!

+ · · · , (11)

which is absolutely convergent and converges rapidly only when x � 1. The second equation is a

recursion ∣∣∣∣Γ(x+ iy/2)
Γ(x)

∣∣∣∣2 =
[
1 +

(y
x

)]−1
∣∣∣∣Γ(x+ 1 + iy/2)

Γ(x+ 1)

∣∣∣∣2 . (12)

For large x, Heinrich (2004) computes F (−iy, iy;x; 1) with the series (11). For small x, Heinrich

(2004) calculates F (−iy, iy;x+n; 1) via the series (11) for some n chosen to be sufficiently large and

work down to n = 0 using the recursion (12). This algorithm gives very accurate result efficiently.

Heinrich (2004) also gives code to generate random numbers from Pearson’s Type IV distribution,

implementing an exercise in Devroye (1986). This implementation is used in the simulation study.

2.2 Johnson’s SU Distribution

Johnson’s SU distribution is one of the three systems that Johnson (1949) introduced using trans-

formations of the standard normal variate. Let Z be a N(0, 1) variable. The SU transformation is

defined with

Z = γ + δ sinh−1

(
X − ξ

λ

)
, (13)

where sinh−1 is the inverse hyperbolic sine function, and ξ, λ > 0, γ, δ > 0 are parameters. The

density function of Johnson’s SU distribution can be easily found in closed-form from variable

transformation:

f(x; γ, δ, ξ, λ) =
δ

λ

√
1 +

(
x−ξ
λ

)2
φ

[
γ + δ sinh−1

(
x− ξ

λ

)]
, (14)

where x ∈ R, φ is the density function of N(0, 1), ξ and λ > 0 are location and scale parameters,

respectively, γ can be interpreted as a skewness parameter, and δ > 0 can be interpreted as a

kurtosis parameter. The distribution is positively or negatively skewed according as γ is negative

or positive. Holding γ, increasing δ reduces the kurtosis. However, similar to the case of Pearson’s

Type IV distribution, γ and δ can not be viewed as purely skewness and kurtosis parameters,

respectively.
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We give the first four moments of Johnson’s SU distribution. The mean and variance are

µ = ξ + λω1/2 sinhΩ, (15)

σ2 =
λ2

2
(ω − 1)(ω cosh 2Ω + 1), (16)

where ω = exp(δ−2) and Ω = γ/δ. Since there is not much simplification in the expressions for

skewness and kurtosis, we give the third and fourth central moments µ3 and µ4, respectively,

µ3 =− 1
4
ω2(ω2 − 1)2[ω2(ω2 + 2) sinh 3Ω + 3 sinh Ω], (17)

µ4 =
1
8
(ω2 − 1)2[ω4(ω8 + 2ω6 + 3ω4 − 3) cosh 4Ω (18)

+ 4ω4(ω2 + 2) cosh 2Ω + 3(2ω2 + 1)]. (19)

The regions of β1 and β2 offered by Johnson’s SU distribution is the area below the dashed line illus-

trated in Figure 1 One can conclude that Johnson’s SU distribution has lighter tail than Pearson’s

Type IV, and as a result, it has a slightly wider region in the β1-β2 plane.

As Johnson’s SU distribution is obtained from a transformation of a standard normal variate,

its computation is a lot easier relative to Pearson’s Type IV distribution. The distribution function,

quantile function, and random number generator are all straightforwardly available from transform-

ing those of the standard normal. The gradient and Hessian of the log-likelihood are analytically

available, which is an advantage relative to Pearson’s Type IV distribution.

2.3 Remarks

Both Pearson’s Type IV and Johnson’s SU families are location-scale distributions. The standard

versions are obtained when ξ = 0 and λ = 1. Let µs and σ2
s be the mean and variance of the

standard version a distribution. By constraining

λ = 1/
√
σ2

s , (20)

ξ = −λµs, (21)

we obtain standardized versions of these families with mean zero, variance one, and two shape

parameters. These standardized versions can be applied in an ARCH context; see discussions in

Section 3.
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[Figure 2 about here.]

In Figure 2, we present the log-densities of four standardized distributions: normal, hyperbolic,

Johnson’s SU, and Pearson’s Type IV. The hyperbolic distribution is a sub-family in the GH

distribution with one of the three shape parameters fixed at 1 (Barndorff-Nielsen and Stelzer 2004)

and hence can be standardized similarly using the other two shape parameters. All four distributions

in the plot have mean zero and variance one. All but normal have skewness −0.5 and kurtosis 6.

It is clear from the plot that the log-density of normal is a parabola while that of hyperbolic is

a hyperbola. In the range (−5, 5), the three fat-tailed distributions have very close log-densities.

However, when we zoom out to the range (−20, 20), we observe that the tail thickness are in the

order: hyperbolic, Johnson’s SU, and Pearson’s Type IV.

Compared to Pearson’s Type IV distribution, Johnson’s SU distribution has several advantages:

its density is available in easy-to-evaluate closed-form; its skewness and kurtosis has a slightly wider

range; and it provides more efficient estimate for volatility parameters when the true unknown

density has tails not as thick; see details in Section 4.

3. AUTOREGRESSIVE CONDITIONAL DENSITY

Suppose that the observed time series is yi, i = 1, . . . , T . A general model of GARCH(p,q) is

yt|ψt−1 = µt(a) + εt, (22)

εt|ψt−1 =
√
htzt, (23)

ht = b0 +
q∑

i=1

bqε
2
t−q +

p∑
i=1

bq+pht−p, (24)

E(zt) = 0, Var(zt) = 1, (25)

where µt(a) is the conditional mean with parameter vector a, zt are independent and identically

distributed (iid) with density f(·; η), and η is a vector of shape parameters. A standardized version

of Pearson’s Type IV (4) or Johnson’s SU (14) can be used as f(·; η) to model asymmetry and

fat-tail. The mean component µt(a) can, for example, be specified by an ARMA formulation.

More flexibility can be introduced by allowing asymmetry or fat-tail or both to be time-varying.

There are two approaches to impose dynamics on skewness or kurtosis. The first approach is the
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ARCM, where dynamics are imposed directly on skewness or kurtosis and the shape parameters

are backed out from the skewness or kurtosis (Harvey and Siddique 1999; Brooks et al. 2002). This

approach can be very computing intensive. For example, in the case of noncentral t distribution

used by Harvey and Siddique (1999), the shape parameters have to be numerically obtained from

skewness or kurtosis. One exception is the Gram-Charlier distribution, which uses the skewness and

kurtosis directly as parameters. The second approach is the ARCD, where dynamics are imposed

on shape parameters and skewness or kurtosis are derived from the time-varying shape parameters

(Hansen 1994; Jondeau and Rockinger 2003). This approach is less computationally demanding

than the first approach. The skewness and kurtosis are allowed to explode, which can be very

useful in modeling extremal events, even though the shape parameters are stationary (Jondeau and

Rockinger 2003). The ARCD approach is adopted in the sequel.

An ARCD model replaces f(·; η) with f(·; ηt). Suppose the assumed distribution is Johnson’s

SU distribution where ηt = (γt, δt)>. As these parameters determines the skewness and kurtosis,

it is tempting to include the cubic or quartic of εt−1. However, these terms have high variations

which may lead to numerical problems in estimation. Hansen (1994) used quadratic equations

while Jondeau and Rockinger (2003) used piecewise linear equations of εt−1. We use the threshold

specification similar to Jondeau and Rockinger (2003) for shape parameters ηt = (γt, δt)>, except

that we use the standardized innovation zt−1 instead of non-standardized εt−1:

γt = c0 + c1z
+
t−1 + c2z

−
t−1 + c3γt−1, (26)

δt = d0 + d1z
+
t−1 + d2z

−
t−1 + d3δt−1, (27)

where z+
t−1 = max(zt−1, 0), z−t−1 = min(zt−1, 0), and ci’s and di’s, i = 0, 1, 2 and 3, are parameters

to be estimated. As noted by Jondeau and Rockinger (2003,p.1709), care should be taken when the

effect of z+
t−1 and z−t−1 are insignificant. Consider the model for γt to illustrate. When c1 = d2 = 0,

the model reduces to γt = c0 +c3γt−1, which can not be distinguished from a constant model γt = γ

after γt quickly converges to its stationary level c0/(1− c3). A model with c3 = 0 should be fitted

first to confirm whether past observations affect γt. Therefore, when all c1 and c2 are insignificant

while c3 is significant in an estimation, the result is spurious.

When there is constraints on parameters, transformations can be used remove the constraints
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and the dynamics can then be imposed on the transformed parameters. For example, the shape

parameter m in Pearson’s Type IV distribution has to be greater than 3/2 for the variance to exist.

One can impose the dynamics on the transformed parameter g(mt) = log(mt − 3/2):

g(mt) = d0 + d1z
+
t−1 + d2z

−
t−1 + d3g(mt−1). (28)

The conditional log-likelihood of the full ARCD model is

LLK =
T∑

t=max(p,q)+1

{
log f(zt; ηt)−

1
2

log ht

}
. (29)

When autoregressive terms of shape parameters ηt are used in the ARCD specification, some

reasonably arbitrary initial value η1 can be used to get the iteration started, and its effect is

negligible.

4. SIMULATION

It is of practical interest to examine the performance of quasi-maximum likelihood estimates

(QMLE) when the unknown distribution is approximated by systems of frequency curves (White

1982). The QMLE under normal specification of zt in (22) has the advantage of being consis-

tent and asymptotically normal when the mean and variance are correctly specified. Newey and

Steigerwald (1997) gave general conditions under which the QMLE is consistent using a different

parameterization, . However, the parameterization of (22) is mostly widely used and it is more

interesting to study the finite sample performance of the QMLE of the volatility parameters in

GARCH model (22) when flexible shapes are allowed in the assumed distribution. The purpose of

the simulation in this section is to compare the bias and efficiency of the QMLE from a range of

assumed distributions under a range of true distributions.

The simulation is done with assuming the mean component µt(a) = 0. Three true distributions

of zt are used: hyperbolic, Johnson’s SU, and Pearson’s Type IV. The three distributions has

different thickness in their tails as illustrated in Figure 2. They all have two shape parameters such

that the mean is 0, variance 1, skewness −0.5, and kurtosis 6. Other values of skewness and kurtosis

are also tried, with similar results found and hence omitted. The higher moments of the hyperbolic

distribution are available from Barndorff-Nielsen and Stelzer (2004). Numerical method is used

to search the parameters that yield the specified skewness and kurtosis. These three distributions
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plus normal are used as assumed distributions. Dataset with 2,000 observations are generated from

a GARCH(1,1) model with b0 = 0.1, b1 = 0.1, and b2 = 0.8 under the three true distributions of

zt. Parameter are estimated with all four assumed distributions for each generated dataset. This

process is repeated 1,000 times.

The simulation result of volatility parameters are summarized Table 1. As these QMLEs are not

necessarily consistent, their square root of the mean squared errors (rmse) are reported instead of

standard errors. At sample size 2,000, the average of the QMLEs from all assumed distributions are

virtually very close to the true parameter values. The normal-QMLE is clearly at a disadvantage

relative to others in terms of the efficiency measured by rmse. When the assumed distribution and

the true distribution match, MLE is obtained, which have the highest efficiency as expected. When

the true distribution has the lightest tail (hyperbolic), there is efficiency loss with both Johnson-SU-

QMLE and Pearson-Type-IV-QMLE, the loss from Johnson’s SU is less than from Pearson’s Type

IV. When the true distribution has medium thick tail (Johnson’s SU), there is some efficiency loss

with Pearson-Type-IV-QMLE but little loss with hyperbolic-QMLE. When the true distribution

has the thickest tail (Pearson Type IV), both hyperbolic-QMLE and Johnson-SU-QMLE are almost

as efficient as the MLE. These simulation results suggest that the hyperbolic-QMLE be used in

estimating the volatility parameters. However, as discussed in the next paragraph, using hyperbolic

distribution leads to poor estimation about the tail behavior. Johnson’s SU distribution gives

a comprise between efficiency and tail behavior. In combination with the computational ease,

Johnson’s SU distribution makes a very useful tool in an financial analyst’s toolbox.

[Table 1 about here.]

The higher efficiency of the QMLE from lighter-tailed distributions comes at a cost which in-

volves the shape parameters. These QMLEs converge to pseudo-values that minimize the Kullback-

Leibler (KL) distance between the assumed distribution and the true distribution (White 1982).

Table 2 summarizes the simulation result of the QMLE of the shape parameters. The averages

of the QMLE are very close to the pseudo-values. However, the assumed distribution, with the

pseudo-values in Table 2 as parameters, can give skewness and kurtosis that are very different from

the true skewness and kurtosis, even though they minimizes the KL distance in their family. This
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is clearly seen in Table 3. The true distributions all have skewness −0.5 and kurtosis 6. When the

true distribution is hyperbolic, the Pearson Type IV distribution which minimizes the KL distance

has skewness −2.012 and the kurtosis does not exist! When the true distribution is Pearson Type

IV, the corresponding Johnson SU distribution has skewness −0.438 and kurtosis 5.174, and the

hyperbolic distribution has skewness −0.377 and kurtosis 4.504, respectively. Therefore, when the

true distribution has thicker tail than the assumed distribution, although the volatility parameters

can be estimated with little efficiency loss, the implied higher moments can be way off the truth.

[Table 2 about here.]

[Table 3 about here.]

5. APPLICATION

In this section, we apply Johnson’s SU distribution and Pearson’s Type IV distribution to model

the daily returns of the Standard & Poor’s 500 index (S&P 500). Daily closing prices pt of the

S&P 500 index are obtained from public domain finance.yahoo.com with symbol “gspc”, which

makes it easy to reproduce and compare against the results. The daily prices pt spans from January

2, 1990 to June 14, 2000. The daily returns are obtained as yt = 100 × log(pt/pt−1) with 2,641

observations. The returns series is plotted in Figure 3. The unconditional skewness and kurtosis

−0.342 and 8.164, respectively. indicating that the data are left skewed and highly leptokurtic.

[Figure 3 about here.]

The models considered have three components: mean, variance, and shape. The mean compo-

nent can generally be modeled by an ARMA specification, but for the S&P 500 index returns, we

simply use a constant. The variance component is a GARCH(1,1) model. These two components

are summarized as

yt = a0 + εt, (30)

εt|ψt−1 =
√
htzt, (31)

ht = b0 + b1ε
2
t−1 + b2ht−1, (32)

E(zt) = 0, Var(zt) = 1. (33)
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The conditional distribution of the innovation zt is assumed to be the standardized version of

Johnson’s SU or Pearson’s Type IV. The two shape parameters of the innovation distribution can be

time-invariant or time-varying. All the fitted models are nested in a full conditional autoregressive

density model. In the case of Johnson’s SU, the shape parameters are specified as

zt ∼ Johnson’s SU(·; γt, δt), (34)

γt = c0 + c1z
+
t−1 + c2z

−
t−1 + c3γt−1, (35)

δt = d0 + d1z
+
t−1 + d2z

−
t−1 + d3γt−1. (36)

In the case of Pearson’s Type IV, the specification of shape parameters are replaced with

zt ∼ Pearson’s Type IV(·; νt,mt), (37)

νt = c0 + c1z
+
t−1 + c2z

−
t−1 + c3γt−1, (38)

g(mt) = d0 + d1z
+
t−1 + d2z

−
t−1 + d3g(mt−1), (39)

where transformation g(mt) = log(mt − 3/2) is used to impose the constraint mt > 3/2 for the

existence of the variance. For numerical stability, we have also constrained the variance parameters

such that b1 > 0, b2 > 0, and b1 + b2 < 1.

[Table 4 about here.]

Table 4 summarizes the estimation result for all the models under Johnson’s SU distribution. In

addition to parameter estimates and their standard errors, the maximized log-likelihood and model

selection criteria AIC and BIC are also reported for each model. We first notice that the variance

component changes little across all models. The conditional variance is highly persistent as the sum

of b1 and b2 is very close to 1. The basic model M1 has constant shape parameters with implied

skewness −0.185 and kurtosis 5.097, which are reasonably close to the empirical skewness −0.490

and kurtosis 5.565 of the standardized innovation. More flexibilities are added to model M1 with

care until the full model M8 is reached. Model M2 introduces time-varying skewness parameter

into M1, while the kurtosis parameter is hold constant. The estimate of c1 is significant, implying

that positive returns tend to increase the skewness. Model M3 differs from model M2 only by the

inclusion of the autoregressive term γt−1 in the equation of γt. The persistence parameter c3 is
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found to be significant. From the significance of c1 in both model M2 and M3, we conclude that the

persistence is not spurious. Model M4 and M5 are similar to model M2 and M3, except that the

kurtosis parameter is time-varying while the skewness is hold constant. Positive returns is found to

increase the kurtosis in Model M4 and M5 from the significance of parameter d1. The persistence

in the kurtosis parameter, implied by parameter d3, is not spurious either in Model M5 with the

skewness parameter fixed. Model M6 allows both shape parameters to be time-varying, without

including their lagged values in the model. The parameters c2 and d1 are found significant, which

motivates putting the lagged shape parameters into their dynamics. Model M7 introduced γt−1 into

model M6 and model M8 in turn introduced δt−1 into model M7. The persistence in both shape

parameters are not spurious. From the change in the log-likelihood, it is well worth including these

terms by AIC. The full model M8 increase the log-likelihood by a significant amount from model

M7, and is selected by both AIC and BIC. From the nesting feature of these models, likelihood ratio

tests can be easily constructed using the log-likelihood reported in Table 4 to test hypothesis of

time-invariant parameters. One would reject the null hypothesis of constant skewness parameter or

constant kurtosis parameter. The time-varying shape parameters γt and δt as well as the conditional

heteroskedasticity ht from model M8, are plotted in Figure 4. For each shape parameter, the time-

invariant estimate and its 95% confidence interval from model M3 and M5, respectively, are also

plotted. It is interesting to note that jumps in conditional heteroskedasticities tend to be associated

with jumps in both conditional shape parameters. This observation gives empirical evidence that

conditional heteroskedasticity alone may not be sufficiently flexible to capture the dynamics of the

conditional density.

[Figure 4 about here.]

The estimation results with Pearson’s Type IV distribution are summarized in Table 5. The

variance components in all models are of little different and are close to the results in Table 4.

Model M1 with constant shape parameters implies skewness −0.226 and kurtosis 5.726, comparing

to the empirical skewness −0.490 and kurtosis 5.565 of the standardized innovation. The fitting

process from model M2 to model M8 is the same as in the case of Johnson’s SU distribution.

Given the closeness of the two distributions, it is not surprising to see that inference about the
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dynamics of the two shape parameters νt and g(mt) is almost identical to that under Johnson’s SU

distribution. That is, both shape parameters are time-varying and the persistence in both of them

are not spurious. The log-likelihood of the fitted models are also very close to those obtained with

Johnson’s SU distribution. There is one point, however, worth noting that these models are fitted

assuming that the variance of the innovation exists but not necessarily the higher moments. This

suggests that Pearson’s Type IV distribution may particularly be useful when extreme events are

present. Comparing the loglikelihoods of all the models in Table 4 and Table 5, we find that the

two distributions give very close fit for models M1–M3, but Pearson’s Type IV yields noticeable

higher loglikelihoods for models M4–M8. The dynamics plot of the conditional heteroskedasticity

and shape parameters are similar to those from Johnson’s SU distribution in Figure 4, and are

therefore omitted.

[Table 5 about here.]

6. DISCUSSION

This article introduces two distributions from systems of frequency curves into the ARCH context

and illustrates their usefulness in flexible modeling asymmetry and fat-tail of financial returns

data. Both Pearson’s Type IV and Johnson’s SU have two shape parameters and span a large

range in the legitimate domain of skewness and kurtosis. Both distributions has location and

scale parameters, which can be used to constructed standardized distributions with mean 0 and

variance 1. The standardized distributiona are then used as the innovation distribution in an ARCH

framework. Dynamics are imposed on the two shape parameters, forming autoregressive conditional

density models. Pearson’s Type IV distribution has even thicker tail than Johnson’s SU. It can

be viewed as an alternative forumlation of the increasingly popular skewed t distribution. The

normalizing constant of Pearson’s Type IV has been implemented to facilitate the application of

this distribution. Johnson’s SU distribution has an advantage that the density is available in easy-

to-compute closed-form. It also has the interpretation of “transform to normal”. Our simulation

study shows that the QMLE of the volatility parameters from both distributions are more efficient

that the normal-QMLE and their efficiency relative to the MLE depends on the shape of the true but

unknown innovation distribution. Even though the QMLE from a lighter tailed distribution can be

16



highly efficient in volatility parameters, their implied skewness and kurtosis can be off the empirical

measurements. Both distributions should be added to practitioner’s toolbox in approximating the

unknown truth.

Equipped with a fleet of asymmetric and fat-tailed distributions, one may consider an adap-

tive procedure to fit a real dataset. Although financial returns data often has fat-tails, it is not

necessarily the case that the thicker-tail the better. It is possible that a fat-tail distribution gives

kurtosis much higher than the empirical kurtosis. When the tail is not too thick, a hyperbolic,

Gram-Charlier, or many other distributions may give equally good fit. It is deemed useful to com-

prehensively survey all these asymmetric and fat-tailed distributions. The final choices of which

distributions to use may be made from some preliminary analysis. For a given dataset, one can fit a

simple model with a robust method, for example, normal-QMLE. From the resulting standardized

innovations, one can compute simple statistics that measure asymmetry and fat-tail without even

assuming the existence of skewness and kurtosis. These measures can then be used to guide the

selection of which distributions to use (e.g. Hogg 1974).
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Figure 1: Comparison charts of the β1 and β2 regions for different distributions. The dashed line
is the boundary of Johnson’s SU. The dotted line is the boundary of Pearson’s Type IV. The
dash-dotted line is the boundary of Gram-Charlier.
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Figure 2: Comparison of log-densities, zoomed in and out. The solid line is hyperbolic. The dashed
line is Johnson’s SU. The dotted line is Pearson’s Type IV. The dash-dotted line is normal.
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95% condifence interval from model M3 and M5, respectively.
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Table 1: Quasi-maximum likelihood estimates of volatility parameters based on 1000 replications
of sample size 2000.

True Distribution Assumed Distribution

Normal Hyperbolic Johnson SU Pearson IV

Parms True Est rmse Est rmse Est rmse Est rmse
Hyperbolic

b0 0.1 0.109 0.042 0.106 0.035 0.114 0.040 0.122 0.046
b1 0.1 0.102 0.028 0.101 0.024 0.109 0.029 0.116 0.034
b2 0.8 0.788 0.062 0.792 0.051 0.793 0.052 0.793 0.053

Johnson SU
b0 0.1 0.110 0.048 0.105 0.034 0.106 0.035 0.108 0.036
b1 0.1 0.102 0.030 0.099 0.023 0.101 0.023 0.102 0.024
b2 0.8 0.788 0.068 0.793 0.051 0.793 0.051 0.793 0.050

Pearson IV
b0 0.1 0.112 0.046 0.107 0.036 0.107 0.036 0.108 0.036
b1 0.1 0.103 0.029 0.100 0.023 0.100 0.023 0.101 0.023
b2 0.8 0.784 0.065 0.790 0.052 0.791 0.052 0.791 0.052

Table 2: Quasi-maximum likelihood estimates of shape parameters based on 1000 replications of
sample size 2000.

True Distribution Assumed Distribution

Hyperbolic Johnson SU Pearson IV

Parms True Psudo Est Se Psudo Est Se Psudo Est Se

Hyperbolic
β −0.024 −0.025 0.017 0.243 0.242 0.046 0.561 0.558 0.121
α 0.194 0.200 0.119 1.263 1.270 0.067 2.266 2.290 0.153

Johnson SU
γ 0.327 −0.174 −0.190 0.075 0.340 0.086 0.905 0.959 0.278
δ 1.671 1.224 1.289 0.336 1.695 0.132 3.216 3.296 0.370

Pearson IV
ν 1.129 −0.262 −0.288 0.118 0.378 0.394 0.107 1.206 0.388
m 3.714 1.713 1.824 0.454 1.851 1.884 0.159 3.833 0.487
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Table 3: Skewness and kurtosis comparison across true distributions and its minimum Kullback-
Leibler Distance distributions.

True Distribution Assumed Distribution

Moments True Hyperbolic Johnson SU Pearson IV

Hyperbolic skewness −0.500 −0.865 −2.012
kurtosis 6.000 12.346 Inf

Johnson SU skewness −0.500 −0.400 −0.610
kurtosis 6.000 4.824 8.137

Pearson IV skewness −0.500 −0.377 −0.438
kurtosis 6.000 4.504 5.174

Table 4: Parameter estimates and standard errors of autoregressive conditional density models with
Johnson’s SU distribution for the S&P 500 index returns.

Parms M1 M2 M3 M4 M5 M6 M7 M8

a0 0.053 0.066 0.074 0.053 0.051 0.065 0.081 0.072
0.014 0.014 0.015 0.014 0.014 0.014 0.015 0.014

b0 0.002 0.004 0.003 0.003 0.003 0.002 0.003 0.004
0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001

b1 0.040 0.041 0.042 0.043 0.051 0.045 0.046 0.050
0.008 0.009 0.009 0.009 0.010 0.008 0.009 0.009

b2 0.958 0.953 0.955 0.957 0.949 0.954 0.954 0.950
0.009 0.010 0.009 0.009 0.010 0.008 0.009 0.009

c0 0.148 0.242 0.152 0.084 0.072 −0.076 0.020 −0.091
0.095 0.158 0.086 0.085 0.081 0.115 0.111 0.077

c1 −0.551 −0.526 −0.071 −0.336 −0.217
0.250 0.184 0.114 0.153 0.097

c2 −0.125 −0.081 −0.957 −0.273 −0.613
0.081 0.063 0.415 0.244 0.232

c3 0.660 0.584 0.527
0.125 0.201 0.102

d0 1.807 1.903 1.824 1.798 0.470 1.713 1.652 0.473
0.096 0.144 0.129 0.088 0.145 0.121 0.114 0.107

d1 −0.296 −0.282 −0.291 −0.243 −0.226
0.065 0.049 0.055 0.071 0.035

d2 −0.051 0.059 −0.616 −0.277 −0.407
0.191 0.070 0.272 0.208 0.163

d3 0.799 0.685
0.084 0.068

LLK −3178.0 −3172.0 −3166.2 −3173.2 −3168.1 −3164.0 −3160.6 −3150.8
AIC 6368.0 6360.0 6350.4 6362.4 6354.3 6348.0 6343.2 6325.5
BIC 6403.3 6407.0 6403.4 6409.4 6407.2 6406.8 6407.9 6396.1
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Table 5: Parameter estimates and standard errors of autoregressive conditional density models with
Pearson’s Type IV distribution for the S&P 500 index returns.

Parms M1 M2 M3 M4 M5 M6 M7 M8

a0 0.053 0.066 0.081 0.058 0.060 0.056 0.066 0.066
0.014 0.014 0.015 0.014 0.015 0.014 0.015 0.015

b0 0.002 0.002 0.003 0.004 0.006 0.003 0.004 0.006
0.001 0.001 0.002 0.002 0.002 0.001 0.002 0.002

b1 0.040 0.040 0.043 0.050 0.063 0.047 0.050 0.063
0.008 0.009 0.009 0.010 0.011 0.009 0.009 0.012

b2 0.958 0.960 0.956 0.948 0.935 0.952 0.949 0.937
0.009 0.009 0.010 0.010 0.012 0.009 0.009 0.012

c0 0.478 0.742 0.491 0.050 −0.242 −0.125 −0.333 −0.197
0.423 0.797 0.433 0.225 0.146 0.325 0.287 0.223

c1 −1.719 −1.849 −0.145 −0.143 −0.483
0.860 0.500 0.272 0.271 0.288

c2 −0.219 −0.236 −3.401 −3.338 −1.499
0.259 0.203 1.444 1.526 0.665

c3 0.648 0.029 0.507
0.120 0.079 0.123

d0 0.764 0.791 0.746 0.996 0.497 0.894 0.904 0.348
0.380 0.164 0.210 0.196 0.098 0.209 0.233 0.092

d1 −0.919 −0.975 −0.921 −0.943 −0.804
0.200 0.157 0.179 0.195 0.133

d2 0.133 0.011 −0.397 −0.359 −0.169
0.185 0.155 0.159 0.145 0.090

d3 0.740 0.714
0.063 0.059

LLK −3177.9 −3171.6 −3165.8 −3170.9 −3158.7 −3158.9 −3158.3 −3144.8
AIC 6367.7 6359.3 6349.6 6357.8 6335.4 6337.8 6338.6 6313.6
BIC 6403.0 6406.3 6402.5 6404.8 6388.3 6396.6 6403.2 6384.1
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